Journal of Computer Languages 78 (2024) 101242

Contents lists available at ScienceDirect e COMPUTER
LANGUARGES

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

Check for

Solvi: A visual constraint modeling tool o

Xu Zhu**, Miguel A. Nacenta, Ozgiir Akgiin ?, Daniel Zenkovitch "

2 School of Computer Science, University of St Andrews, St Andrews, Fife, United Kingdom
b Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada

ARTICLE INFO

Dataset link: Supplementary Data (Original dat
a), Video Figure (Original data), System (Origi
nal data)

Keywords:

Constraints programming
Visualization

Visual modeling

ABSTRACT

Discrete constraint problems surface often in everyday life. Teachers might group students with complex
considerations and hospital administrators need to produce staff rosters. Constraint programming (CP) provides
techniques to efficiently find solutions. However, there remains a key challenge: these techniques are
still largely inaccessible because expressing constraint problems requires sophisticated programming and
logic skills. In this work we contribute a language and tool that leverage knowledge of how non-experts
conceptualize problems to facilitate the expression of constraint models. Additionally, we report the results of
a study surveying the advantages and remaining challenges towards making CP accessible to the wider public.

Visual language
Human computer interaction

1. Introduction

In professional and personal life, people are often faced with what
mathematicians and computer scientists call constraint problems: prob-
lems in which the solution involves a set of states of objects that
satisfy certain conditions (the constraints). For example, when a teacher
assigns students to project groups, the teacher might want to enforce
certain group constraints, such as each group having at least one
extrovert, and global constraints such as all groups having students
from multiple sexes. Other examples include assigning tasks to different
members of a team, building a family schedule, nurse rostering in
hospitals, or planning a wedding seating arrangement.

Researchers in the research communities of constraint solving, con-
straint satisfaction problems, operations research and others have de-
voted much time and resources to develop theories, methods and
software that efficiently help find solutions for constraint problems
(e.g., [1,2]). Existing programming languages and constraint solvers
allow their users to express problems as problem models and, for a large
number of those problems, efficiently find a number of solutions, or
show that no solution complies with all the constraints.

We believe that the research areas of visual languages, visual rep-
resentation (including Information Visualization) and HCI/interface
design can contribute new approaches to creating more accessible con-
straint problem specification. Visual languages seem particularly fitting
to represent CP problems because these involve many objects that have
complex relationships between them (constraints) and, unlike textual

* Corresponding author.

constraint programming languages, naturally provide a diagrammatic
overview of the problems and might require less specialized skills to
read and write. Additionally, visual languages might enable expression
of problems in ways closer to how people naturally describe this type
of problems [3-5].

The main goal of this paper is to explore a novel alternative to
express constraint models that will be more accessible. We aim at
extending the target audience as much as possible, but recognize that
proficient users of constraint programming languages are unlikely to
need or prefer such system. On the other end of the spectrum, some
novel users might not be able to express any model if they lack the basic
logical or mathematical concepts. Thus, our secondary goal is to assess
to what extent non-experts in constraint programming languages can
effectively express constraint problems when supported by a language
and interface design for this purpose.

Building upon previous work on how people naturally describe
constraint problems [4,5], we designed the first visual language for
constraint problem specification and implemented a novel prototype
tool that uses this language while applying several UI design innova-
tions. The tool, which we call Solvi, enables people to create visual
descriptions of constraint problems, supports them checking that the
model expresses what they wanted to express (through an alternative
natural language representation), translates the models to a state-of-
the-art CP language, sends it to a solver, and visualizes the solutions.
We also contribute a study that assesses the effectiveness of the tool

E-mail addresses: xz32@st-andrews.ac.uk (X. Zhu), nacenta@uvic.ca (M.A. Nacenta), ozgur.akgun@st-andrews.ac.uk (e} Akgiin), danielzenkovitch@uvic.ca

(D. Zenkovitch).

https://doi.org/10.1016/j.cola.2023.101242

Received 16 February 2023; Received in revised form 24 August 2023; Accepted 29 October 2023

Available online 23 November 2023

2590-1184/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
mailto:xz32@st-andrews.ac.uk
mailto:nacenta@uvic.ca
mailto:ozgur.akgun@st-andrews.ac.uk
mailto:danielzenkovitch@uvic.ca
https://doi.org/10.1016/j.cola.2023.101242
https://doi.org/10.1016/j.cola.2023.101242
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2023.101242&domain=pdf
http://creativecommons.org/licenses/by/4.0/

X. Zhu et al.

and, perhaps more importantly, identifies which concepts are more
challenging for non-expert users.

2. Example problem

We now provide an example scenario where a constraint problem
needs a solution. It serves as a running example throughout the rest
of the paper to introduce Solvi’s design. We selected this scenario
according to three criteria: it must allow us to demonstrate most of the
features of the language and give an indication of its expressive power,
it has to be simple and familiar enough to be readily understandable
for the reader, and it must be a plausible representative of a real task.
Some readers might object that the example below can be reasonably
solved by hand in a time comparable to what it would take to express
the model. Although this is tenable, consider that the human effort
and time required grow fast with increasing quantities of elements and
constraints, that tasks would often require successive small fixes that
might force the human solving process to start from scratch, and that
humans can easily miss very advantageous solutions when they take
shortcuts in the name of tractability and timeliness.

Taylor is a teacher at a high school who is planning a project for the
students on a class. Taylor’s class has 21 students, some of which
are new to the school, with a range of previous grades that are
presumed to somewhat reflect their academic skills. Taylor wants
to create 5 teams of three to five students but also wants to make
sure that new students can benefit from the experience of other
students at the school (and have the opportunity to connect with
the existing social fabric). Taylor ensures this by having at least one
older student in each team. Finally, the assignment should take into
account that students Idris and Ally had a conflict in the past and
the school advisor has recommended that they do not sit together
in a team.

What kind of team assignments are possible? Can Taylor also bal-
ance out the average grade in the teams so that all teams have similarly
strong chances at a good grade?

3. Background and related work

This section provides the necessary background regarding constraint
programming (CP), problem modeling and existing systems for visual
programming and visualization in CP.

A constraint satisfaction problem is a problem that can be expressed
through decision variables and a set of constraints. Each decision
variable has an associated domain encoding the potential values it
can take. A constraint is a condition on a subset of the variables that
limits the values they are allowed to take. Constraint Programming
(CP) [6] is a declarative method for stating and solving constraint
satisfaction problems. CP is successfully applied in many high-impact
areas such as timetabling, staff rostering, logistics, production planning
and experiment design [7,8].

The process of applying CP to a problem can be crudely divided
into two parts: modeling and solving. Once a problem is modeled into
a suitable language, it can be automatically solved using a constraint
solver. For complex real life problems, the modeling step presents a
real difficulty: capturing a correct and efficient model is hard, even
for experts. High-level modeling languages like Essence [9,10] and
Zinc [11] reduce the need for this expertise somewhat through abstract
domain types like sets, functions, and relations.

This paper is the first on the topic of supporting the CP modeling
process through visual means and visualization. The existing con-
straint visualization systems focus on debugging or for understanding
the progress of the solving process, mainly through visualizing the
search-tree and result set. Existing systems allow the user to create
a visualization for a specific problem by visualizing the underlying

Journal of Computer Languages 78 (2024) 101242

constraint network directly [12], or by creating vector images and
writing code to link the images to the model [13], and sometimes add a
time dimension to allow visualizing the progress over time [14,15]. In
contrast, other systems allow creating a search-tree based visualization
in a model-independent way [16,17]. There is also preliminary research
to understand user expectations for search-tree based visualizations
[5,18].

Existing research recognizes problem representation as one of the
key elements or stages for solving a problem. Scientists often propose
notations as a way to advance their fields [19,20]. Writing and sketch-
ing are often seen to be a natural extension of internal mental processes
and help to augment human memory and processing capacity [21]
and have a significant role in the visualization and understanding of
data [22,23]. The role of representation has been studied in educational
contexts [24], for understanding how people build models of working
systems [25], and for problem modeling, sketching and visualization of
large datasets [26].

Visual programming languages primarily aim to make program-
ming accessible to broader audiences by managing the complexity of
specifying systems that are highly interconnected [27-29].'? Scratch
is a prominent example that uses drag and drop blocks to specify
a program instead of writing code [30]. These visual programming
languages are typically for procedural languages rather than declarative
and are not free from their own limitations such as scalability [31] and
clutter [32]. Theoretical aspects of the design, parsing and specification
of visual programming languages are extensively discussed by Marriott
and Meyer [33].

A related technique that aims to make the CP modeling process
easier is programming by example, where a model is synthesized using
examples of correct and incorrect solutions to a particular problem
[34-37]. These systems do not require their users to have any knowl-
edge of CP modeling, however the correctness of a synthesized model is
difficult to check and often impossible to prove. For complex problems,
the number of required examples can be extremely large.

4. Design goals and principles

We designed Solvi with the overarching goal of making constraint
solving technology more accessible for personal and professional prob-
lem solving. We further make the overarching goal more explicit
through four main objectives. The design of Solvi aims at:

O1 Enabling modeling and communication of a range of constraint
problems that is as broad as possible, for a broad range of people.

02 Solving and representing solutions to the modeled problem effec-
tively.

03 Supporting situated use in locations beyond programming stations
(i.e., computers that require at least semi-dedicated spaces).

04 General comfort, learnability and ease of use.

To accomplish those objectives, we selected a design approach
based on six key design principles:

DP1. Visual representations. Many have posited that visual repres-
entations are key facilitators of understanding and communication
(e.g. [38,39]), which aligns also with O2; additionally, visual languages
are a common approach to address formalization by non-programmers
([32,40], supports O1). Finally, Zhu et al. found that most people
asked to express constraint problems can effectively use graphical
representations to a large extent, although not exclusively [4].

1 https://cycling74.com/products/max/.
2 https://www.mathworks.com/products/simulink.html.

https://cycling74.com/products/max/
https://www.mathworks.com/products/simulink.html

X. Zhu et al.

DP2. Flexible composability. To achieve the expressiveness of O1 we
require substantial flexibility, which is usually offered by a language
that enables a limited number of elements (tokens) to be used multiple
times and combined in multiple different ways. We followed an atomic
approach similar to that reported by Méndez et al. [29,41], itself based
on educational constructivist and constructionist philosophies [42,43].

DP3. Underspecified to specified. Problem understanding by people is
progressive, and partially facilitated by the externalization of the prob-
lem model itself (e.g., [44]). It seems reasonable to support a journey in
which the problem holder interacts with the software gradually to build
the formalization of their problem at the same time that they build their
understanding of the problem. We therefore have to assume that the
problem starts being underspecified and gets gradually refined through
interaction with the system as part of the interaction loop.

DP4. Multiple notations. Zhu et al. [4] observed that, although graphi-
cal representations are useful for people to express problems, different
groups of people rely also on more textual notations. A multi-notational
approach that uses a visual language in combination with textual
representations might better support a broader range of users (O1) as
well as provide alternative feedback that assures the problem holder
that their model is consistent with their problem (02,04).

DP5. Graphical freedom. Previous research in other domains suggests
that the arrangement and appearance of elements in computerized
representations is important for people to preserve their mental map
and to effectively locate and recognize these elements (e.g., [45])
which, in turn, would affect O4. Rather than constrain the arrangement
and appearance of items represented in the problem, we aim to support
a degree of graphical freedom, especially encouraging familiarity of
the representation to allow people to relate to their prior experiences.
Zhu et al. [4] also found that people also use sketches or shorthand
symbols (e.g., happy or sad smileys) to represent elements in constraint
problems, perhaps for these reasons.

DP6. Bottom-up and top-down. Problem specification by humans some-
times takes place in a bottom-up way (e.g., starting with examples and
then generalizing to more abstract properties), and sometimes top to
bottom (e.g., specification of the structure of the problem first, followed
by providing the specifics, or data). Supporting both approaches to the
extent possible is consistent with O4, DP3 and avoids Blackwell and
Green’s premature commitment issue [46].

These design principles represent the best knowledge available to us
for the design of Solvi, and justify the main design choices described in
Section 5. Naturally, many other approaches are possible.

5. Solvi: Design

Solvi is both the visual constraint modeling visual language and the
web interface that implements it. In this Section, we use the example
from Section 2 to introduce the main elements of Solvi and how they
work together to model constraint problems. We reference to items in
Section 4 when the design of a feature has been motivated directly by
an objective or principle (e.g., O1, DP3). We use sMALL cAps to introduce
the names of features in the interface and italics to refer to constructs
of the Solvi language.

5.1. General structure

Solvi supports interaction both through touch and through cursor
to enable interaction from tablets and from PCs/Laptops (i.e., it is
designed to support situated use — Design Goal O3). The main interface
has four key panes (Fig. 1.A to D) that we will discuss in their own
subsections below.

Visual representations can be screen real estate-hungry. To enable
cross-notation interaction (DP4) and avoid having to rely too much
on memory (part of O4), a Pane Apsustment Hanbpie (Fig. 1.E) allows

Journal of Computer Languages 78 (2024) 101242

modelers to quickly change the proportion of the screen devoted to
each pane by simply dragging the panes’ cross point. We anticipated
that this would also better support different stages of the process
(i.e., more space on the visual modeling pane at the beginning, and
larger area for the solutions at the end—see also the video figure?).

A Commanp WHEEL contains the different modes of interaction (e.g.,
drawing, solving) as well as different operators (e.g. equals, minimize,
min, etc.) that can be added to the panes. The drawing mode creates
the object, which can then be modified to become other types of items.
The other modes, when selected, allow placing the different operators
on the canvas. The wheel rotates to reveal the different available
modes, operators, and tools. The list of modes is fixed and cannot be
defined by the user. The wheel is designed so that the thumb can
rest in its middle when used without a table or support (03), and
so that it can still be scrolled and elements selected by shifting the
hold position of the thumb (04). This is intended to free up the other
hand for other interactions such as placing new objects on the panes.
Alternatively, one can switch palette to use a more traditional toolbar
as well, especially when using a mouse.

5.2. Visual modeling pane and Solvi visual language

The top left pane of Solvi (Fig. 1.A) is an infinite canvas where the
user builds the graphical model of the problem using the Solvi visual
language. The main operations on the canvas are to create new items, to
edit or delete existing items and to connect items. Since the operation of
the canvas is tightly interwoven with the design of the visual language,
we describe both simultaneously through the scenario where Taylor
starts modeling the problem from Section 2.

One key element of Taylor’s problem are the students themselves.
To represent a student, Taylor uses the command wheel in the SkercH
Mope (Fig. 2.A) and makes a quick sketch in the shape of a person,
and adds some spiky hair, which is one of student Ally’s trademarks
(sketching the appearance of the object supports DP5). That creates
a widget representing an object, which can be given a specific name
(e.g., Ally— Fig. 2.B). Then, by tapping the plus button at the bottom
of the widget and renaming the placeholder text, Taylor creates some
attributes relevant to the problem, such as their grade, and whether they
are new or not (Fig. 2.C). For Ally, those values can then be directly
edited by creating a value and connecting it to the left port of the
corresponding attribute (Fig. 2.D).

Taylor would need then to do the same for all other students, but
instead creates an object group, which is a more abstract item meant
to represent collectives of objects. To create an object group widget,
Taylor first creates a regular object widget, and then changes its type to
object group (Fig. 2.E). Taylor changes the “amount” attribute and then
expands the instances to automatically create the rest of the objects.
These attributes above the sketch in the widget are type attributes and
are specific to the type that is selected. Because Taylor wants all 21
student objects to share the same attributes, Taylor connects Ally’s
object to the “Students” object group (Fig. 2.F), which automatically
creates attributes in any other objects belonging to the object group.
Two key features here are that the individual student widgets can be
all hidden through a button (Fig. 2.G) to avoid cluttering the interface
(04), and that the values of the attributes of each object can also
be filled by uploading a simple file with comma separated values, by
pressing a button in the object group widget (Fig. 2.H). Having two
mechanisms to create multiple objects (a common feature in almost all
constraint problems) supports DP6 because users can build groups from
all their constituents or by defining an abstract group, or a hybrid of the
two. Notice also that this design is also compatible with DP3, since it
does not require that existing objects are connected to anything or be
consistent while the model is being built.

3 https://solvi.org.uk/Solvi.mp4.

https://solvi.org.uk/Solvi.mp4

X. Zhu et al.

Journal of Computer Languages 78 (2024) 101242

er
has an allibute grase from Students wih the value of &

ere is a ooject named Amara in Stugents

ere s a ooject named Al in Students
has an atlribute newnsss from Studens.
has an atliioute grae from Students with the value of 15

ere 15 a conlaner grouy) named Teams
s notorderes

can nolg exacuy 21 things and the ftems cannot be repeated in
be container grouy

Jortained items Students cannot be repeated n the container

oup
hos an afribute avg grade from Teams
4 ere are 5 contaner mstances in Teams

e s @ coniaier named Team 1 1 Teams,
Ifis notorserea

° -
A E 2 P et beicpusea i tho conter
, ane J e e e
@—>@Wfncd Mhimise o = 2 GEESRE nameet GRERTA i G
% gt
Ad Us-l-men-l- 1] ok b 8§ i end e ems
v b repeten n o contaner
R o Touns,

in Teame

Handle

can holg bemeen 3 an
Yoot ba st i th

things and the itoms.

EEx

SQiUﬁOﬂS

brtainer Team 2 contains
th attibutos

g grade s 35

briainer Team 3 contains
Witn attibutos.

object Huter

Fig. 1. Main structure of Solvi interface and top-level interface elements.

\
\

Team 2.

0 (4

..é:.

’ @ variance ® > ® minimise

Fig. 2. The visual specification of the example problem in the visual pane. Refer to the text for letter references.

The crux of Taylor’s problem is distributing students into teams.
A team is best represented as container in the Solvi visual language.
This is a common construct that enables modeling a large variety of
constraint problems (O1). If Taylor had to select a single team out of the
class of students (e.g., for a regional contest), creating a single container
would be sufficient, but the problem requires multiple teams, for which
Taylor must create a container group. A widget for the container group
item is created in the same way as an object group (sketch, then switch
item type) and also supports bottom-up creation (DP6). The resulting
widget (Fig. 2.I) is named “Teams” and has a sketch of a classroom
table in it (teams usually work together in a table in Taylor’s class).

The widget receives a put into link from the Students object group, which
indicates that teams are made of students (DP2— Fig. 2.J). The widget
also allows Taylor to specify: (a) how many groups to make (5, amount:
5); (b) how many of the students have to be placed in any group (21,
capacity: 21 to 21); and, (c) whether students can be in multiple groups
(no, repeated in group: false and repeated? students: false). This problem
now uses all four possible types: object, object group, container, and
container group. It is not possible to create any new types, but using a
combination of the four types, it is possible to model a wide variety of
problems.

X. Zhu et al.

At this point the model will be solvable and would produce all
possible combinations of five groups between three and five students
in size. This might be sufficient in situations where there are not many
solutions and the user can simply select, by inspection, one that works
(DP3). However, problems are often combinatorially complex, requir-
ing explicit programming of the constraints. Here we will illustrate two
ways of specifying constraints. The first is through relationships, which
has its own section on the container widget (Fig. 2.K). To make Idris
and Ally be in a different team, one of the options is to force Idris to be
in Team 1, and Ally in Team 2. This can be done by creating a contains
relationship in the corresponding team that is then connected through
an equal operator to the Ally object (Fig. 2.L), and then the same for
Idris in Team 2. Taylor creates the relationship by tapping the plus
button in the relationship section of the widget and then selecting the
required relationship type from the dropdown. This is a concrete way
to specify simple constraints that support bottom-up processes (DP6).
Objects can have any number of relationships, and relationships can
be of more sophisticated types. For example, relationships can specify
the order or adjacency of elements in a container (when the container
is ordered—Teams in this example are not ordered).

The second, more sophisticated, type of constraint uses a selector-
representative pair of objects. A selector essentially allows us to filter
and get a subset of elements from any object group or container group
based on one or more conditions. The representative allows the user
to apply a constraint or relationship to each of the elements selected
by the selector, and works in an identical way as a regular object or
container, except it does not have a name because it represents each
of the possible selected objects or containers. Selector and representative
widgets are always created in pairs, by dragging from the object group,
container or container group. In our example, Taylor uses one selector-
representative pair to choose students who are not new (i.e., attribute
newness = 0), and another to operate with each of the teams (selecting
all the teams but no conditions on the selector— Fig. 2.M). By linking
the representative of students who are not new to a contains relationship
of the representative of all teams, Taylor indicates that every team
has to contain at least one student who is not new. The selector-
representative pair of widgets could have been unified into a single
widget because we did not find any modeling situation in which they
would not go together, but we chose to split it into two widgets to
create a more consistent parallelism with its textual representation
(DP4—see Section 5.3), and to scaffold learning by novice modelers,
which we anticipated would best understand these as two separate, but
consecutive, functions (04).

A final element to complete the example involves minimization.
Taylor wants to balance out the average grade on each Team, which
makes sense to give all teams a fair chance. To do this, a new attribute
of a team container (average grade) is created. Its value is calculated
through the average operator, from the attribute of the grade of students
in the team container itself (Fig. 2.N). This automatically propagates
and creates a new attribute in the teams container group (Fig. 2.0).
The “avg grade of Teams” in the container group is then connected
to the variance operator which, in turn, is connected to the minimize
operator (Fig. 2.P). This effectively communicates to the system that
Taylor wants to minimize the variance among the grade averages of
the groups.

For completeness we highlight two additional characteristics of
the Solvi visual language and interface that are not obvious from
the example above. First, many of the items, including containers,
container groups, selectors and many relationships can be qualified with a
cardinality (e.g., Fig. 2.Q). This provides additional power to represent
sophisticated models. For example, one could force the “at least one
student who is not new” condition on a limited number of teams, or a
range of them (between 1 and 3), instead of in all of them.

Second, the interface has a number of different ways to connect ele-
ments between them, which embody the syntax of the visual language.
Links are enabled (and initiated) through ports (small circles with a

Journal of Computer Languages 78 (2024) 101242

symbol inside—e.g., Fig. 2.R) from which Links (arrows—e.g., Fig. 2.S)
can be dragged to other ports in different items. There are 6 kinds of
links. Red discontinuous arrows represent put into links (e.g., students
are put into groups— Fig. 2.T). Orange continuous arrows represent is
part of links (e.g., Ally is part of the “students” object group— Fig. 2.U—
and team 1, 2, 3 and 4 are each connected to the “teams” container
group). In the interface, is part of links can be compressed (and all
the constituent items hidden) through a button in the destination port
(Fig. 2.V) to avoid cluttering the space (04, DP5). Tan-colored solid ar-
rows with square ports indicate selected by links (Fig. 2.W—essentially
connections to a selector, see explanation above). Finally, there are two
types of links to connect objects and numeric values: green arrows
connect individual values or objects to attributes or operators (Fig. 2.Y),
and yellow links contain lists of elements, usually to be aggregated by
operators such as average, sum, or variance (Fig. 2.X). The problem uses
all the different major widget types that exist in the system.

The relatively large number of connection types is a source of
complexity for modelers, but it is a deliberate choice based on Zhu
et al’s findings [4], who found that people use arrows and links
to represent relationships of many different types that involve more
than one construct. Additionally, there is a limited choice of visual
idioms to represent this kind of connections (this is discussed further
in Section 8).

5.3. Text pane

This pane is the main mechanism by which we support DP4. Zhu
et al. noted that people expressing constraint problems often require
alternative types of notations to express a problem [4], and problem
solving in other domains (e.g., physics problems [44]) often depend
on accurate transformation of verbal information into diagrams (see
also [47, Chapter 2]). This pane (shown in Fig. 1.C) provides a rel-
atively simple translation of the contents in the Visua. MobpELING PANE
to English text. The main purpose is to allow modelers to check that
what they have represented in the diagram corresponds with what
they intended, in a different form closer to the problem formulations
that they hold in their mind. This can help ameliorate some of the
issues of visual notations, which sometimes require memorization of
arbitrary graphical symbols and signified constructs. For example, a
novice modeler might not be very clear about the meaning of the
selector-representative constructs, but after trying them out in the
visual modeling pane, the text pane shows “In any element from all
groups, it contains old students at least 1 times”. Fig. 3 shows a few of
the sentences that Solvi constructs for the English textual description
of the model.

In its current version, the text pane does not allow direct input of
text that would be automatically translated in its visual form. However,
there are two features that further facilitate multi-pane interactions
across the two notations: (a) when a modeler selects an item on the
text pane, the visual modeling pane highlights that item and can pan
to show the object if it is currently out of view, and (b) item types,
names and numeric attributes can be changed in the text pane.

5.4. Visual and textual solutions panes

The bottom left pane (Fig. 1.B) is dedicated to visually displaying so-
lutions (i.e., combinations of object states that comply with the imposed
constraints—02). Computation of solutions is activated by selecting the
Sorve mode in the Commanp WHeeL and dragging the item for which we
need the solutions from the VisuaL MopEeLiNG Pane. In our example, this
is the “Teams” container group, but in other problems there might be
several items that can be solved independently (DP6). This feature can
be invoked at any time (DP3).

The initial default of dragging a container or container group to the
Sorution Pane will display the calculated solutions using a containment
visual idiom. Each row represents a solution, which will show the

X. Zhu et al.

There is a object group named Students .

It has an atfribute newness from Students. @

It has an attribute grade from Students
There are 21 object instances in students

There is a object named Idris in Students .

It has an atinbute newness from Students.

It has an attribute grade from Students with the
value of 19

There is a object named Hunter in Students.

It has an attribufe newness fram Students with
the value of 1.

It has an attribute grade from Students with the
value of 25

There is a object named Wyatt in Students .

It has an attribute newness from Students.

It has an attribute grade from Students with the
value 0l 42

There is a container group named Teams .
Itis not ordered -

Itcan hold exaclly 21 things and the items
cannot be repeated in the container group.
Contained items Siudenis cannot be repeated in
the container group.

It has an attribute avg grade from Teams.

There are 5 container instances in Teams .

There is & contaner named leam 1 in leams
Itis not ordered -

Itcan hold between 3 and 5 things and the
items cannot be repeated in the container.

It has an attribute avg grade from Teams.

There is a container named Team 4 in Teams
Itis not ordered .

It can hold between 3 and 5 things and the
items cannot be repeated in the container.

It has an affribute avg grade from Teams

There is @ container named Team 5 in Teams

Journal of Computer L

anguages 78 (2024) 101242

The objecl gioup named Sludenls can be pu C

into conlainer gioup named Teams
any number of fimes.

container group Teams , contains Ally at least
1 times

container group Teams , contains Idris at least
1 times

all groups is the nickname of a subset of Teams

where all of the subset has the following the
conditions:
There are no condition applied.

old students is the nickname of a subset of

Students where one or more of the subset has

the following the conditions:

The attributc newness from Students is cqual to

0

In any element from all groups (which is

There is @ object named Nora in Students
It has an attribute newness from Students with
the value of 1.

Itis notordered .

Itcan hold between 3 and 5 things and the

selected from Teams), it contains old students
atleast 1 times

Fig. 3. The textual specification of the problem in the text pane. A showing the Student descriptions, B showing the Teams descriptions, and C showing description of the

constraints.

Find ilems Ural go into Teams.
Outputting atiributos:
vaiance of avg grade

With constraint attributcs:

Solution 1
varance of avq qrade on
Teams is 0
container Team 1 contains
With attributes
avg grade i5 35

object elena

object Sophia

object Amara

object Aly
container Team 2 contains
With aftnbutes
avg grace is 35

object Idiis

object Wyatt

objoct Mio

object Isia
container Team contains
Wilh allibules
avg grade 15 35

objoct Hunter

obiect Josie

object Alani

object Gigi

Fig. 4. The solution panes for the main example. Visual on the left, text on the right.

specific sub-containers, sub-sub-containers, and so on. By default the
solutions will not display any attributes. The interface enables dragging
and dropping of specific attributes from items in the VisuaL MODELING
Pane into the TempLATE SoLution in the VISUAL SOLUTIONS PANE (a special
place holder representing a prototype of the solutions, which appears
on top). This forces every solution to display the values of that attribute.

In more concrete terms, Fig. 4, left side, shows the solution pane for
our example problem. The second row, which shows the first solution
(Fig. 4.B) is enclosed by a gray rectangular area that contains a further
rectangular area for each of the teams with the team sketch (a table)
which, in turn, contain rectangles with the sketch of each person
(e.g., Fig. 4.C is Ally). Notice that the representation of each team in the
solution also indicates the average grade (e.g., Fig. 4.D). This is because
Taylor dragged the “average grade of team” from the teams containers
of the VISUAL MODELING PANE into the visuaL soLUTION TEMPLATE (Fig. 4.A). The
pane is scrollable horizontally so that one can see all the components
of the solution, even if it does not fit in the current size of the pane,
and vertically so that all the available solutions are visible.

Displaying the sketches takes a significant amount of space, but
also provides the modeler a visual overview of the solution using the
same symbols (sketches) that they used for the modeling phase. This
represents further support for DP5 and might reduce ambiguity and
facilitate recognition by rendering solutions in a way that resembles
an Isotype diagram [48].

The corresponding Text SoLuTioN PANE represents the solutions in text
form. Analogically to how the Text PANE supports the VisuAL MODELING
PanE, the Text Sorution PANE supports disambiguation of the solutions
of the VisuaL Sorutions PaNE, but also serves as a useful output format
(e.g., to copy-paste into an e-mail).

5.5. Other features

The design of the interface is completed with some necessary fea-
tures including: save/load functions, undo/redo, a system to show
messages to the user (e.g., when an invalid cycle is discovered in the
created model), zooming out of the canvas for an overview of the
problem, and a way to upload bulk attribute values to a group through
a CSV file.

Finally, during the design we noticed that there are cases in which
the nested structures of container groups, containers, object groups and
objects can make it difficult to assess which item an attribute belongs
to (e.g., students have a grade, but teams have collections of student
grades, and the group of teams can itself have a collection of grades,
all of which could be operated with). To address this problem we chose
to label attributes with their original items when these are inherited
from contained or subgroup types. For example, in Fig. 2.Z the grade
of Students attribute in the Teams container group refers to the set of
values of contained Students. This applies also to the text-based panes.

6. Design methodology and implementation

The current prototype of Solvi was designed and implemented based
on previous studies of people’s understanding of constraint problem
representation [4] and of the constraint problem solving process [3].
The design process iteratively developed the Solvi language based on
the objectives and design principles, while interleaving design of visuals
and interaction techniques with implementation. This allowed us to
adapt the language, the interface, and the software infrastructure to
each other, and to make sure that the generated code for the solver
would be compatible with the designed behavior. A key technique
during the process was the generation of a library of canonical problem

X. Zhu et al.

examples in plain English which allowed us to incrementally build the
language. When the design evolved, we could check whether previously
addressed problems were still modelable and whether the constructs
designed thus far were still necessary as well as compatible and con-
sistent with the new introduced elements and constructs. We also
regularly checked the compatibility of the design with the principles
and objectives that we had selected a priori, and informally tested the
different versions of the prototypes on ourselves and others.

The Solvi language provides an interface to the Essence [9] textual
constraint programming language which, in turn, compiles models
of the Conjure modeling system [49] with the Athanor Local Search
Solver [50]. Although Essence was itself the product of an effort to
make constraint programming more accessible, the Solvi language is
far from a one-to-one translation of the elements of Essence. A key
technical challenge was generating valid Essence from the specification
and behavior of the Solvi language. The validation of this process was
done by hand and is detailed in the supplementary materials.*

The implementation is based on a client-server architecture sup-
ported by the Meteor.js library,” so that heavy computing, especially
the running of the constraints solver, can be offloaded to a powerful
server. The client side is built on React® and SVG.js.” The server is
implemented in Node.js.® The system is available to use at https://solvi.
org.uk/. The source code is available on GitHub https://github.com/
solvi-cp/solvi-cp and as a DOI at https://zenodo.org/doi/10.5281/
zenodo.10149440..

7. Solvi: Evaluation

In this section we evaluate Solvi. Through our evaluation we aim
to validate our design goals (Section 4), identify potential weaknesses
and use our findings as guidance for future improvements.

7.1. Evaluation design rationale

There are many questions about a tool such as Solvi that are best
addressed through empirical evaluation methods such as observations,
interviews, and laboratory studies. We have identified five central
questions concerning Solvi: (a) is there an actual need for such kind
of system; (b) will such need be recognized by potential users?; (c) will
people using such a system be able to leverage its interface to address
their actual needs; (d) to what extent? and (e) with which level of
performance? Although all these questions are relevant to most systems
at some point, finding answers to some is more relevant at certain
stages of their adoption.

At this stage of Solvi’s development, questions (a), (b), and (c)
are most pertinent since we have found no previous work answering
them in the context of systems for solving constraint problems, and
they evaluate the approach’s potential, significance, and feasibility.
Question (d) addresses important issues related to the coverage (power,
expressiveness) of the language and interface (e.g., what percentage of
problems encountered by people can Solvi cover?), and (e) is mostly
about the basic usability of the system and aspects that would make
the system more useful. Questions of type (d) and (e) are important,
but we consider them somewhat premature in this area. Moreover,
answering these questions often demands methodologies that rely on
participant pools that do not exist today, given the limited number of
people familiar with constraint problem-solving tools.

Therefore, our evaluation centers on understanding people’s prob-
lem identification skills, the perceived value of our solutions, and their

https://solvi.org.uk/Solvi-supplementary.zip.
https://www.meteor.com/.
https://reactjs.org/.

https://svgjs.dev/.

https://nodejs.org/.

® N o u A

Journal of Computer Languages 78 (2024) 101242

capability (after basic training) to articulate problems using the Solvi
language. We opted for a mixed-methods study. Initially, we inter-
viewed participants about their experiences with constraint problems.
Following that, we introduced them to a controlled environment with
specific tasks, assessing their ability to understand and use the proposed
system. Recognizing that prolonged sessions might fatigue participants
and compromise data quality, we designed an evaluation within the
time constraint of two hours. This required making hard choices on how
many different problems it was reasonable to cover and how to split the
time between more open questioning of participants and the different
activities that they had to carry out. While various designs are possible,
the experimental design described below represents our best attempt
at answering the most urgent subset of questions a-d above within
a reasonable scope. More specifically, the purpose of the empirical
evaluation is: (1) to validate the motivation of our work (do people
encounter constraint problems that they would like to solve in a better
way?); (2) to assess people’s ability to identify and model problems
(how well can people express constraint-based problems?); (3) to assess
the design of the Solvi language (to what extent can participants express
their problem in the Solvi language? Which constructs are hardest to
understand?), and; (4) to assess the main components of the Solvi User
Interface (what UI components present problems or need improvement?
What UI components offered clear benefits?).

7.2. Participants and procedure

Our evaluation design exposed participants to the Solvi system for
individual sessions of approximately two hours per participant. We
recruited 12 participants (8 female, 4 male, age 18 to 34) into two
expertise groups (6 participants each): people with a Computer Science
background (but without explicit constraint programming expertise—
the CS group), and people without (the non-CS, or novice group). We
chose to expose people with different expertise to Solvi to see whether
lack of programming abilities would present specific barriers to the
novice group. The experimental design and protocol was approved in
advance by the local Research Ethics Board. Participants received a £20
online voucher or equivalent in their local currency as compensation
for their time.

Participation was remote over the Microsoft Teams platform. Partic-
ipants used their own computers, and were encouraged to use a tablet,
pen or touch device when possible. The web-based Solvi system was
accessible directly to their devices through a web URL.

After providing consent, participants underwent the experiment’s
six phases as follows: (1) introduction and constraint problem ex-
amples (video of a real-world situation that can be modeled as a
constraint problem, and description of two example constraint prob-
lems: a knapsack filling problem® and the wedding table problem!'?);
(2) participants reflected on constraint-based problems of their own;
(3) the experimenter demonstrated the operation and features of Solvi
(30 min); (4) participants used Solvi to model a wedding table problem;
(5) participants used Solvi to model one of their own problems; (6)
participants filled a NASA TLX questionnaire about the tasks, and;
(7) the experimenter conducted a semi-structured interview about the
constructs of the language and the general usability of the tool.

During phases 4 and 5 (participant using Solvi to model) the ex-
perimenter provided two types of guidance. If a participant did not
remember a particular feature or completed a part of the representation
incorrectly, the experimenter highlighted what they did wrong. If they
still could not progress, they received guidance on the next step to fix
the mistake. The experimenter carefully recorded how much guidance
each participant needed, which is part of the analysis. This process

9 https://www.csplib.org/Problems/prob133/.
10 https://github.com/RishabhTyagiHub/Constraint-Satisfaction-Problem---
Wedding-Seating- Arrangement.

https://solvi.org.uk/
https://solvi.org.uk/
https://solvi.org.uk/
https://github.com/solvi-cp/solvi-cp
https://github.com/solvi-cp/solvi-cp
https://github.com/solvi-cp/solvi-cp
https://zenodo.org/doi/10.5281/zenodo.10149440
https://zenodo.org/doi/10.5281/zenodo.10149440
https://zenodo.org/doi/10.5281/zenodo.10149440
https://solvi.org.uk/Solvi-supplementary.zip
https://www.meteor.com/
https://reactjs.org/
https://svgjs.dev/
https://nodejs.org/
https://www.csplib.org/Problems/prob133/
https://github.com/RishabhTyagiHub/Constraint-Satisfaction-Problem---Wedding-Seating-Arrangement
https://github.com/RishabhTyagiHub/Constraint-Satisfaction-Problem---Wedding-Seating-Arrangement

X. Zhu et al.

was necessary to ensure that all participants reached as far as possible
within the modeling process. Further details, including the problem
descriptions and example problem model (modeled by the researchers)
are in the supplementary materials.

7.3. Measurements and analysis methodology

The inputs to the analysis were: data from the video of the partici-
pants’ progress through modeling the problem; the final representation
that participants achieved in the system (including the level of help
provided by the experimenter); the NASA TLX questionnaire answers (a
20-point scale), and the semi-structured interview answers. Most of the
analysis (all except the NASA TLX) is qualitative in nature. We chose
a hybrid analysis procedure. On one side we follow a straightforward
thematic analysis focused on topics of interest determined a priori from
the purposes listed at the top of this Evaluation Section. On the other
side, we wanted to discover issues, topics and themes that we had
not considered a priori, for which we carried out a multi-pass analysis
procedure reminiscent of grounded theory [51], with three passes over
the data: identification of constructs of interest, codebook construction
and coding, and topics aggregation through affinity diagramming. The
NASA TLX was analyzed for differences between the novice and CS
groups through a Mann-Whitney U test [52].

7.4. Results

We discuss the key results in the order of the goals listed above.
Items 2 and 3 are tightly intertwined and hence discussed together.

Validation motivation. All participants were able to provide examples
of their daily life that they thought they would benefit from if modeled
and solved computationally. Participants mentioned a variety of valid
constraint problems, from furniture arrangement to organizing COVID-
safe bonfires. Several participants highlighted in the interview the
potential value to them of finding better solutions, finding them faster,
or not having to find solutions by hand. For example, P8 said in the
interview regarding the applicability of the system to real life problems:
“Yeah, for sure. And I could imagine like I was explaining where there
is like 400 something classes [being scheduled], it would become a
lot more useful.”. P9 said, “I think if there were anything that was
related to trying to organize something that has a lot of variables or
considerations, it would be useful to organize it out, both visually for
people to see where things are related to each other as well as the
possible outcomes”.

Expressing and modeling problems (with the Solvi language). Participants
completed between 35% and 98% of the modeling task of Phase 4 (the
wedding table problem) during the allocated time. Participants man-
aged to complete the majority of the modeling task, with around 66%
of the participants completing 70% or more of the wedding table task
within the given time. However, all participants had some guidance. A
large proportion of the required guidance was related to elements on
the interface, rather than the constructs of the language. Around two
thirds of the participants modeled a reasonably easy problem in Phase
5 with up to two constraints, and they fully completed the task. The last
third of the participants tried modeling a hard problem which required
the use of the selector-representative and many constraints. However,
they were not successful in finishing the problem in the given time.
As expected, participants from the non-CS group had more difficulty
with modeling. One notable issue was the use of terminology; although
we carefully considered the nomenclature to avoid technical terms
as much as possible, Solvi still required naming the main constructs
(e.g., container, container group, attribute). Participants, especially from
the non-CS group, had difficulty remembering those terms. More gener-
ically, non-CS participants also had problems translating the problem
specification to the Solvi language, in a similar way to how novice

Journal of Computer Languages 78 (2024) 101242

programmers face the challenge of computational thinking (e.g., [53]).
P7 mentioned that they were “not really used to thinking in this way”.

These intrinsic difficulties are confirmed by the analysis of the TLX
data, which shows that a majority of non-CS participants found the task
mentally taxing and, to a lesser extent, frustrating (see Table 1). The CS
group attributed significantly less mental load to the problem, as well
as less frustration. This clear divide suggests that the system relies, at
least at this initial level of training, on the programming and/or logical
background of the participants. Interestingly, when modeling their own
problem right after, the differences between the two groups are not as
marked (or statistically significant—see Table 2). This might be because
participants’ own problems are less demanding, their choice of problem
is less demanding, or because they learned from the previous task.

As expected, some constructs were perceived as more difficult to
use, as well as creating more trouble for the participants. The two
main challenges encountered by participants were in the selector-
representative construct. Participants 3, 4, 5, 7, and 8 were confused
with how to set the relationship constraint on the representative.
Additionally, some participants had misconceptions about the use of the
selector. For instance, one non-CS participant connected the attribute
on the selector to the right side of an equal to constraint on a container.
10 out of the 12 participants had issues applying either the filter
or the constraint. 6 out of the 12 participants used the quantifier
selector-representative incorrectly as part of the model representation.
Participants often confused the difference between‘‘exists one”, “exists”
and “all”. All 12 of the participants experienced issues with these
widgets and reported that it was their least understood part of the
system.

Other issues include problems with the ordered attribute of con-
tainers (which was necessary to model the wedding problem because
it enables constraints such as “adjacent to”). 9 out of the 12 partic-
ipants did not set ordered to true initially on the container group.
This omission meant that people sitting around a table container did
not have a sequence, and hence missed the ability to use positional
relationship constraints. This reveals that participants did not understand
the meaning of ordered, and only became aware of the problem after
trying and failing to locate next to in the representative of tables widget
element.

6 out of the 12 participants also confused the capacity property on
the container group and the capacity on the individual container in-
stances. They thought the capacity on container group was the capacity
on the individual containers as opposed to the total capacity of all the
containers within the group.

Solvi UI’s components. As intended, the sessions uncovered multiple is-
sues of the interface, but also highlighted some of the perceived benefit
of specific features. On the positive side, 8 participants appreciated
the Ossect SkercH feature, which they found fun or engaging (e.g., P7:
“Because you can draw things ... that’s quite fun for me”), and useful
to understand the representations in the UI (e.g., of the solution—P9
“I do like that when it gives me the solution, I can see it both visually
and textually”.). 3 of 12 participants also explicitly used the text pane
to confirm or understand what they had done. P1 mentioned that “So,
even if I got a little bit confused ... even if had any questions, I could just
take a look here [the text pane] and it was very detailed information”.
Although we expected to observe more use of the text panes, several
participants highlighted that they focused on the modeling first, and
did not have sufficient time to check the text in the Text PANE.

On the negative side, the Commanp WHEEL attracted much negative
attention because it impeded participant’s ability to remember and eas-
ily access important commands. Although this is likely a crucial issue
of the interface design, it might have been aggravated by the wheel
not having any obvious benefit to someone using the system while
sitting and not on a touch-enabled device. Another key issue is that 10
participants made mistakes in the direction of the ArRrows created, and
had difficulty remembering which ports to use. Other problems were

X. Zhu et al.

Table 1

Journal of Computer Languages 78 (2024) 101242

NASA TLX answers and statistical comparison of CS vs. Non-CS participants for the wedding table modeling task. Responses
are on a 20-point scale and grouped into bins of size 4. MWU stands for Mann-Whitney U. The Mann-Whitney U test is a
non-parametric test for hypothesis testing. [52] The calculated p-value from the Mann-Whitney U test shows the significance
of the difference between the Non-CS and CS cohorts. A p-value less than 0.05 is considered significant.

Wedding table Score Mean Median p-value MWU
04 5-8 9-12 13-18 17-20
Non-CS 0 1 0 1 16.2 17.5
Mental cs 0 1 0 10.0 11.0 0.041 5.000
. Non-CS 0 0 0 2.5 2.0
Physical cs 0 1 1 0 45 15 1.000 18.500
Non-CS 1 1 1 0 8.8 10.0
Temporal cs 1 -!1 0 0 58 55 0.240 10.000
Non-CS 0 0 14.5 14.0
Performance cs 1 1 0 85 85 0.026 4.500
Non-CS 0 0 15.3 15.5
] Non-CS 0 1 1 2 2 140 140
Frustration cs _ 1 1 0 6.8 75 0.026 4.500
Table 2

NASA TLX answers and statistical comparison of CS vs. Non-CS participants for their own problem modeling task. Responses
are on a 20-point scale and grouped into bins of size 4. MWU stands for Mann-Whitney U. The Mann-Whitney U test is a
non-parametric test for hypothesis testing. [52] The calculated p-value from the Mann-Whitney U test shows the significance
of the difference between the Non-CS and CS cohorts. A p-value less than 0.05 is considered significant.

Own problem Score Mean Median p-value MWU
0-4 5-8 9-12 13-18 17-20
Non-CS 0 1 A1 0 9.8 10.0
Mental cs - 1 0 9 0 6.8 5.0 0.310 11.000
. Non-CS 0 0 0 0 1.3 1.5
Physical s - 5 0 0 0 25 15 0.818 19.500
Non-CS 1 1 2 2 0 10.0 9.5
Temporal s 5 - 0 1 0 57 5.0 0.132 8.500
Non-CS 0 2 1 0 7.0 6.5
Performance cs 1 1 0 0 5.7 6.0 0.818 16.500
Non-CS 0 2 1 0 9.3 9.5
. Non-CS 0 2 0 0 8.2 8.0
Frustration cs 2 1 0 0 4.8 50 0.065 6.500

more circumstantial: the remote testing platform sometimes made the
interaction slow (especially on slow machines, when the participant did
have a greater delay connection to the server, and when the number
of elements on screen grew), and the testing system at the time was
occasionally slow.

Several of the issues raised by the participants were taken into
account in later iterations of the improved implementation which can
be seen in the Figures containing screenshots of the interface and the
video figure.!!

8. Discussion

The subsections below interpret the empirical results, address gen-
eral challenges of interfaces for CP, report what we learnt from the
current design, and highlight limitations of the work.

8.1. Interpretations of empirical evaluation results

The results from the evaluation are mixed, but also encouraging and
useful. Participants were highly supportive of the goal and readily able
to identify situations in which they would benefit from this kind of
system. This is indicative of the potential impact of making constraint
problem solving technologies more broadly approachable.

The results show that people without computer science backgrounds
can achieve some degree of modeling, although they struggle with the
most sophisticated constructs (e.g., the selector-representative), and with
logical and set-theory statements (e.g., all, any, exists), especially when
they are compounded in separate parts of the model. We believe that

11 https://solvi.org.uk/Solvi.mp4.

this reflects, for the most part, the inherent required effort, knowledge
and background of mastering mathematical, logical and programming
constructs. Nevertheless, interpreting the results in our initial study
should consider the limitations of the training (30 min of instruction),
and the general lack of familiarity of participants with formal problem
expression and constraint modeling. Participants confirmed in the in-
terview that, after modeling, they felt more familiar with the concepts
and showed confidence that they would get better with more use.

The data collected also points to issues in the design of the Solvi
language and interface. The simplest have already been addressed in
the current version. For example, Solvi provides on demand an alter-
native to the Commanp WHeEL that sits along the left edge of the screen
and does not hide any modes or tools. There are also improvements in
the general performance of the tool and on the generation of natural
language for the Texr Pane, and an additional feature that allows
Solvi users to change object names and item types from the Texr PANE.
Some other issues are more complex and might require more radical
solutions; for example, the reported difficulties due to the multiple
types of relationships between items, and hence the use of multiple
types of links could require additional UI techniques, implementation
of system inferences, or a deeper rethinking of the interface.

8.2. Solvi design discussion

Solvi is the first visual language and tool for modeling constraint
problems for non CP experts. Problem modeling is essentially a type of
declarative programming and one of the reasons of the lack of attempts
to make CP accessible might be the inherent difficulty of end-user
programming. It would be naive to assume that an interface, regardless
of how clever or carefully designed, can eliminate the challenges of pro-
gramming, a point already made by Nardi in 1993 [32]. Nevertheless,

https://solvi.org.uk/Solvi.mp4

X. Zhu et al.

end-user programming for CP seems quite suitable to a visual interface-
assisted approach such as ours because it lacks some of the complexity
of other types of programming (e.g., procedural programming requires
understanding of control flows). Moreover, recent advances on vi-
sual programming, understanding of problem specification, and new
tools and algorithms (e.g., Machine Learning-Driven Natural Language
Processing and generation such as [54,55]) might make it worth for
more people to learn a new skill, language or interface. A UI can
also become a successful conduit to teach people about how to for-
malize their problems. It might be tempting to believe that end-user
programming is too difficult and, hence, a dead-end, but we know
that there are extremely successful forms of end-user programming,
such as spreadsheets and (for a narrower audience) tools such as MAX-
MSP and Scratch [27]. We see Solvi as a step towards this vision. It
is, nonetheless, a hard problem. Modeling constraint problems might
never fit a “walk-up-and-use scenario”.

One of the most delicate parts of our process was to find a good
balance between the language’s expressivity and simplicity of use. Solvi
tries to strike a balance, applying lessons learnt from Zhu et al.’s study
of how people graphically represent problems [4], without simplifying
the range of representative problems so much that the tool would
become useless. Other approaches are possible which might be com-
plementary. For example, Solvi could include a searchable library of
pre-modeled problems and commonly used constructs ready for people
to adapt to their own circumstances or to add to their models. Interest-
ingly, this points to an additional potential benefit of Solvi and future
tools in it class: producing visual representations of problems that are
formal but also easily glanceable might help different stakeholders
communicate with each other about problems. Providing pre-made
sections of commonly used constructs that people could use as part of
their model.

A related design tradeoff between preciseness and familiarity of the
naming of terms became also obvious. Using technical definitions of
terms such as object, class or collection simplifies linkage to general pro-
gramming constructs but forces people to learn definitions that might
overlap or interfere with more familiar meanings of the same word. Ad-
ditionally, some of these constructs do not match the CP context exactly
(e.g., object groups are similar to classes in object-oriented programming
parlance, but it is not a perfect fit). An interesting prospective solu-
tion would be to enable a kind of “term localisation” which adapts
nomenclature to the circumstances and expertise of the user.

Our interface included several Ul design innovations which we
consider secondary contributions of this work. The main one is the
dual graphical-textual interface for both specification and solution
display that was derived from Zhu et al.’s findings [4], which is also
theoretically supported by principles of multi-media instruction [56].
This element is reminiscent of coordinated views [57] and brushing
and linking [58]. For example, work by Zhi et al. [59] looked at using
linking between text and visualization to enhance storytelling. Simul-
taneously, some applications use visual/UI representations and textual
programming in simultaneously visible screens (e.g., Wrangler for data
cleaning and transformation [60], and Anteater for programming and
debugging with visualization [61]), but we are not aware of any visual
programming systems that offer parallel natural language support to
make sense of the visual semantics. Binks et al. [62] prototyped a
system with parallel natural text and visual representations or ideas,
but it does not involve formal specification and is meant for a very
different purpose (support argumentative essay writing). Other relevant
work includes Kizil et al.’s work [63], who investigated how formal
validation of mathematics elements within a mostly natural text doc-
ument can be validated automatically to assist the user, and Carter
et al.’s work, which uses Machine Learning and NLP techniques to
interpret textual descriptions of constraint problems. These approaches
are complementary to ours and could be integrated as an enhanced way
to connect the TexT PANE with the VISUAL MODELING PANE.

10

Journal of Computer Languages 78 (2024) 101242

Other UI innovations of our system are the simultaneous visual
representation of the problem model and the solutions in coordinated
and linked manner. This includes the use of the same visual idioms
in both panes, the specification of items to solve by dragging from
one pane to another, and the use of a configurable template solution
to indicate which attributes and elements to display in the solution.
We also designed an agile mechanism to quickly reallocate screen real
estate to different representations in 2 dimensions simultaneously that
we believe will be particularly useful for problem specification due to
the requirement that several representations appear simultaneously on
screen, as well as a type of menu (the commanp wreeL) that is designed
to maximize the use of multi-hand interaction while holding a tablet.
However, the value and effectiveness of these two Ul mechanisms need
to be validated in independent studies; in fact, the wheel showed to be
undesirable for non-tablet setups, which is why we allow to switch to
a more standard linear menu.

8.3. Limitations and future work

We acknowledge that the study provides only an initial evaluation
of Solvi. Section 7.1 introduced a general framework that can help
plan the next steps in the evaluation of the tool now and as it pro-
gresses through the next stages of maturity. Specifically, next steps
to evaluate the tool include: (a) an extension of the problem types
tested (possibly through an additional controlled task-oriented study);
(b) an in-the-wild, longitudinal study that could assess the match of the
tool with actual scenarios of use of real users (e.g., similar to [64]);
(c) an in-depth usability study of the features of Solvi, and specifi-
cally those which are novel such as the simultaneous presentation of
diagrams/text and the problem/solution spaces; (d) additional studies
with specific populations such as high school learners or people without
any advanced formal logical or mathematical education, to evaluate the
potential breadth of use of the tool.

There is certainly much more work to be done if we want to make
constraint-based problem solving accessible to everyone. Nevertheless,
we believe that our system and results demonstrate how one can pro-
vide a lower threshold access point to CP for more people. Specifically,
our approach does not require seating at a computer, installing software
and learning how to compile and execute models in textual files. Our
approach might also offer an intermediate step for knowledgeable but
non-formally trained users, perhaps in the same way as spreadsheets
offer access to data analysis and database functionality to non-experts.

Finally, Solvi’s language and interface is quite expressive, but needs
to be extended to be able to express some types of problems that
can be currently modeled with textual CP languages. These classes of
problems include two-way relationships and graphical problems with
two-dimensional (or more-dimensional) data structures such as chess
problems or room space arrangements.

9. Conclusion

This paper presents the design, implementation and initial evalua-
tion of Solvi, a system to support modeling and solving (using existing
solvers) of constraint problems for broader audiences. We contribute
the design of a visual language that can express a wide range of
problems and a supporting novel interface that enables visual refer-
encing through user-generated sketches, a dual-representation style of
interaction (node and link diagram and natural language), and simple
visualization of the solutions based on visual containment.

The results of an initial evaluation show that participants are indeed
holders of this kind of problems. Participants also achieved some degree
of success with modeling of a pre-determined problem and one of their
own problems with relatively short formal training. Having a computer
science background mattered for modeling achievement and perceived
mental load of the task. The study also highlighted the constructs that
presented the most difficulty, which include the selector-representative
and the different ways in which components of the model can relate to
each other.

X. Zhu et al.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Miguel Nacenta reports financial support was provided by Natural
Sciences and Engineering Research Council of Canada. Xu Zhu reports
financial support was provided by Engineering and Physical Sciences
Research Council.

Data availability

I have shared the link to my data/code at the Attach File step.

Supplementary Data (Original data)
Video Figure (Original data)
System (Original data)

Acknowledgments

The authors would like to thank Daniel Zenkovitch for his input into
the Solvi application development.

Current Funding Sources List:

Natural Sciences and Engineering Research Council of Canada,
Canada Award Number: 2020-04401 — Recipient: Miguel A Nacenta

Engineering and Physical Sciences Research Council, United King-
dom Award Number: DTG1796157 — Recipient: Xu Zhu

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cola.2023.101242.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91]

[10]

[11]

[12]

R. Bartak, History of constraint programming, in: Wiley Encyclopedia of Op-
erations Research and Management Science, American Cancer Society, 2011,
http://dx.doi.org/10.1002/9780470400531.e0rms0382.

C. Jefferson, I. Miguel, B. Hnich, T. Walsh, L.P. Gent, CSPLib: A problem library
for constraints, 1999, URL http://www.csplib.org.

R. Hoffmann, X. Zhu, O. Akgiin, M.A. Nacenta, Understanding how people
approach constraint modelling and solving, in: C. Solnon (Ed.), 28th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP
2022), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 235,
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 2022,
pp. 28:1-28:18, http://dx.doi.org/10.4230/LIPIcs.CP.2022.28.

X. Zhu, M.A. Nacenta, O. Akgiin, P. Nightingale, How people visually represent
discrete constraint problems, IEEE Trans. Vis. Comput. Graphics 26 (8) (2020)
2603-2619, http://dx.doi.org/10.1109/TVCG.2019.2895085.

S. Goodwin, C. Mears, T. Dwyer, M.G. de la Banda, G. Tack, M. Wallace, What do
constraint programming users want to see? Exploring the role of visualisation in
profiling of models and search, IEEE Trans. Vis. Comput. Graphics 23 (1) (2017)
281-290, http://dx.doi.org/10.1109/TVCG.2016.2598545.

F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming,
Elsevier, 2006.

J.-F. Puget, Applications of constraint programming, in: International Conference
on Principles and Practice of Constraint Programming, Springer, 1995, pp.
647-650.

M. Wallace, Practical applications of constraint programming, Constraints 1 (1-2)
(1996) 139-168.

A.M. Frisch, W. Harvey, C. Jefferson, B. Martinez-Hernandez, I. Miguel, Essence:
A constraint language for specifying combinatorial problems, Constraints 13 (3)
(2008) 268-306, http://dx.doi.org/10.1007/s10601-008-9047-y.

0. Akgiin, 1. Miguel, C. Jefferson, A.M. Frisch, B. Hnich, Extensible automated
constraint modelling, in: Proceedings of TheTwenty-Fifth AAAI Conference on
Artificial Intelligence, AAAI Press, 2011, pp. 4-11.

M.G. de la Banda, K. Marriott, R. Rafeh, M. Wallace, The modelling language
Zinc, in: International Conference on Principles and Practice of Constraint
Programming, Springer, 2006, pp. 700-705.

M. Paltrinieri, A visual constraint-programming environment, in: International
Conference on Principles and Practice of Constraint Programming, Springer,
1995, pp. 499-514.

11

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Journal of Computer Languages 78 (2024) 101242

A. Bauer, V. Botea, M. Brown, M. Gray, D. Harabor, J. Slaney, An integrated
modelling, debugging, and visualisation environment for G12, in: International
Conference on Principles and Practice of Constraint Programming, Springer,
2010, pp. 522-536.

M. Carro, M. Hermenegildo, Tools for constraint visualisation: The VIFID/TRIFID
tool, in: P. Deransart, M.V. Hermenegildo, J. Matluszynski (Eds.), Analysis and
Visualization Tools for Constraint Programming: Constraint Debugging, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 253-272, http://dx.doi.org/10.
1007/10722311_11.

M. Carro, M. Hermenegildo, Tools for search-tree visualisation: The APT tool,
in: P. Deransart, M.V. Hermenegildo, J. Matuszynski (Eds.), Analysis and Visual-
ization Tools for Constraint Programming: Constraint Debugging, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000, pp. 237-252, http://dx.doi.org/10.1007/
10722311_10.

G. Dooms, P. Hentenryck, L. Michel, Model-driven visualizations of constraint-
based local search, Constraints 14 (3) (2009) 294-324.

H. Simonis, P. Davern, J. Feldman, D. Mehta, L. Quesada, M. Carlsson, A
generic visualization platform for CP, in: D. Cohen (Ed.), Principles and Practice
of Constraint Programming - CP 2010, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010, pp. 460-474.

C. Schulte, Oz Explorer: A visual constraint programming tool, in: International
Symposium on Programming Language Implementation and Logic Programming,
Springer, 1996, pp. 477-478.

D. Kaiser, Physics and Feynman’s Diagrams: In the hands of a postwar generation,
a tool intended to lead quantum electrodynamics out of a decades-long morass
helped transform physics, Am. Sci. 93 (2) (2005) 156-165, URL http://www.
jstor.org/stable/27858550.

R. Penrose, Applications of negative dimensional tensors, Combin. Math. Appl.
1 (1971) 221-244.

B. Tversky, What do sketches say about thinking, in: 2002 AAAI Spring
Symposium, Sketch Understanding Workshop, AAAI Technical Report SS-02-08,
Stanford University, 2002, pp. 148-151.

J. Walny, S. Huron, S. Carpendale, An exploratory study of data sketching
for visual representation, Comput. Graph. Forum 34 (3) (2015) 231-240, http:
//dx.doi.org/10.1111/cgf.12635.

Z. Liu, J.T. Stasko, Mental models, visual reasoning and interaction in informa-
tion visualization: A top-down perspective, IEEE Trans. Vis. Comput. Graph. 16
(6) (2010) 999-1008, http://dx.doi.org/10.1109/tvcg.2010.177.

A. Kohnle, G. Passante, Characterizing representational learning: A combined
simulation and tutorial on perturbation theory, Phys. Rev. Phys. Educ. Res. 13
(2) (2017) 20131.

D. Gentner, A.L. Stevens, Mental Models, Psychology Press, 1983, http://dx.doi.
org/10.4324/9781315802725.

A.W. Crapo, L.B. Waisel, W.A. Wallace, T.R. Willemain, Visualization and the
process of modeling: A cognitive-theoretic view, in: Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’00, Association for Computing Machinery, New York, NY, USA, 2000, pp.
218-226, http://dx.doi.org/10.1145/347090.347129.

M. Resnick, J. Maloney, A. Monroy-Herndndez, N. Rusk, E. Eastmond, K.
Brennan, A. Millner, E. Rosenbaum, J.a.Y. Silver, B. Silverman, Y. Kafai, Scratch:
Programming for all, Commun. ACM 52 (11) (2009) 60-67, http://dx.doi.org/
10.1145/1592761.1592779.

D.J. Rough, A.J. Quigley, Jeeves-an Experience Sampling study creation tool,
BCS Health Inform. Scotl. (HIS) (2017).

G.G. Méndez, M.A. Nacenta, S. Vandenheste, iVOLVER: Interactive visual lan-
guage for visualization extraction and reconstruction, in: Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems - CHI ’16, 2016, pp.
4073-4085, http://dx.doi.org/10.1145/2858036.2858435.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The scratch
programming language and environment, ACM Trans. Comput. Educ. (TOCE)
10 (4) (2010) 1-15.

M.M. Burnett, M.J. Baker, C. Bohus, P. Carlson, S. Yang, P.V. Zee, Scaling up
visual programming languages, Computer 28 (3) (1995) 45-54, http://dx.doi.
0rg/10.1109/2.366157.

B.A. Nardi, A Small Matter of Programming: Perspectives on End User
Computing, first ed., MIT Press, Cambridge, MA, USA, 1993.

K. Marriott, B. Meyer, in: K. Marriott, B. Meyer (Eds.), Visual Language Theory,
Springer-Verlag New York, Inc., New York, NY, USA, 1998.

N. Beldiceanu, H. Simonis, A constraint seeker: Finding and ranking global
constraints from examples, in: J. Lee (Ed.), Principles and Practice of Constraint
Programming — CP 2011, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011,
pp. 12-26.

N. Beldiceanu, H. Simonis, A model seeker: Extracting global constraint models
from positive examples, in: M. Milano (Ed.), Principles and Practice of Constraint
Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 141-157.
N. Beldiceanu, G. Ifrim, A. Lenoir, H. Simonis, Describing and generating
solutions for the EDF unit commitment problem with the ModelSeeker, in: C.
Schulte (Ed.), Principles and Practice of Constraint Programming, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 733-748.

https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi-supplementary.zip
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk/Solvi.mp4
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://solvi.org.uk
https://doi.org/10.1016/j.cola.2023.101242
http://dx.doi.org/10.1002/9780470400531.eorms0382
http://www.csplib.org
http://dx.doi.org/10.4230/LIPIcs.CP.2022.28
http://dx.doi.org/10.1109/TVCG.2019.2895085
http://dx.doi.org/10.1109/TVCG.2016.2598545
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb6
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb6
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb6
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb7
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb7
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb7
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb7
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb7
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb8
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb8
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb8
http://dx.doi.org/10.1007/s10601-008-9047-y
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb10
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb10
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb10
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb10
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb10
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb11
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb11
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb11
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb11
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb11
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb12
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb12
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb12
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb12
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb12
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb13
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb13
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb13
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb13
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb13
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb13
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb13
http://dx.doi.org/10.1007/10722311_11
http://dx.doi.org/10.1007/10722311_11
http://dx.doi.org/10.1007/10722311_11
http://dx.doi.org/10.1007/10722311_10
http://dx.doi.org/10.1007/10722311_10
http://dx.doi.org/10.1007/10722311_10
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb16
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb16
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb16
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb17
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb17
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb17
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb17
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb17
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb17
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb17
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb18
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb18
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb18
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb18
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb18
http://www.jstor.org/stable/27858550
http://www.jstor.org/stable/27858550
http://www.jstor.org/stable/27858550
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb20
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb20
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb20
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb21
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb21
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb21
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb21
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb21
http://dx.doi.org/10.1111/cgf.12635
http://dx.doi.org/10.1111/cgf.12635
http://dx.doi.org/10.1111/cgf.12635
http://dx.doi.org/10.1109/tvcg.2010.177
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb24
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb24
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb24
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb24
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb24
http://dx.doi.org/10.4324/9781315802725
http://dx.doi.org/10.4324/9781315802725
http://dx.doi.org/10.4324/9781315802725
http://dx.doi.org/10.1145/347090.347129
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/1592761.1592779
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb28
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb28
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb28
http://dx.doi.org/10.1145/2858036.2858435
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb30
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb30
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb30
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb30
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb30
http://dx.doi.org/10.1109/2.366157
http://dx.doi.org/10.1109/2.366157
http://dx.doi.org/10.1109/2.366157
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb32
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb32
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb32
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb33
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb33
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb33
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb34
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb34
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb34
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb34
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb34
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb34
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb34
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb35
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb35
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb35
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb35
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb35
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb36
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb36
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb36
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb36
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb36
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb36
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb36

X. Zhu et al.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

G. Fedyukovich, A. Gupta, Functional synthesis with examples, in: T. Schiex,
S. de Givry (Eds.), Principles and Practice of Constraint Programming, Springer
International Publishing, Cham, 2019, pp. 547-564.

R.E. Horn, Visual Language: Global Communication for the 21st Century,
MacroVu Inc. Washington, 1998.

E.R. Tufte, The Visual Display of Quantitative Information, Graphics Press,
Cheshire, Conn., 2001, URL http://archive.org/details/visualdisplayofqOOtuft.
B.A. Myers, Taxonomies of visual programming and program visualization, J.
Vis. Lang. Comput. 1 (1) (1990) 97-123, http://dx.doi.org/10.1016/S1045-
926X(05)80036-9.

G.G. Méndez, U. Hinrichs, M.A. Nacenta, Bottom-up vs. Top-down: Trade-
offs in efficiency, understanding, freedom and creativity with infovis tools, in:
Conference on Human Factors in Computing Systems - Proceedings, Vol. 2017-
May, CHI ’17, Association for Computing Machinery, New York, NY, USA, 2017,
pp. 841-852, http://dx.doi.org/10.1145/3025453.3025942.

J. Piaget, M. Cook, The Origins of Intelligence in Children, Vol. 8, International
Universities Press New York, 1952.

S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, Basic Books,
Inc., USA, 1980.

J. Larkin, J. McDermott, D.P. Simon, H.A. Simon, Expert and novice performance
in solving physics problems, Science 208 (4450) (1980) 1335-1342, http://dx.
doi.org/10.1126/science.208.4450.1335.

M.-A.D. Storey, F.D. Fracchia, H.A. Miiller, Customizing a fisheye view algorithm
to preserve the mental map, J. Vis. Lang. Comput. 10 (3) (1999) 245-267,
http://dx.doi.org/10.1006/jvlc.1999.0124.

A.F. Blackwell, C. Britton, A. Cox, T.R.G. Green, C. Gurr, G. Kadoda, M.S. Kutar,
M. Loomes, C.L. Nehaniv, M. Petre, et al., Cognitive dimensions of notations:
Design tools for cognitive technology, in: International Conference on Cognitive
Technology, Springer, 2001, pp. 325-341.

S.I. Robertson, Problem Solving: Perspectives from Cognition and Neuroscience,
first ed., Psychology Press, 2001, http://dx.doi.org/10.4324/9780203457955.
M. Neurath, Isotype, Instr. Sci. 3 (2) (1974) 127-150, URL http://www.jstor.
org/stable/23368119.

0. Akgiin, 1. Miguel, C. Jefferson, A.M. Frisch, B. Hnich, Extensible automated
constraint modelling, in: W. Burgard, D. Roth (Eds.), AAAI 2011 - Proceedings
of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San
Francisco, California, USA, August 7-11, 2011, AAAI Press, 2011.

S. Attieh, N. Dang, C. Jefferson, I. Miguel, P. Nightingale, Athanor: High-level lo-
cal search over abstract constraint specifications in essence, in: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, {IJCAI-
19}, International Joint Conferences on Artificial Intelligence Organization, 2019,
pp. 1056-1063, http://dx.doi.org/10.24963/ijcai.2019/148.

D. Lincoln, N.K. Denzin, Y.S. Lincoln, The SAGE Handbook of Qualitative
Research, Sage Publications, 2005.

P.E. McKnight, J. Najab, Mann-whitney U test, in: The Corsini Encyclopedia of
Psychology, American Cancer Society, 2010, p. 1, http://dx.doi.org/10.1002/
9780470479216.corpsy0524.

12

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Journal of Computer Languages 78 (2024) 101242

A. Robins, J. Rountree, N. Rountree, Learning and teaching programming: A
review and discussion, Comput. Sci. Educ. 13 (2) (2003) 137-172, http://dx.
doi.org/10.1076/csed.13.2.137.14200.

T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G.
Krueger, T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C.
Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S.
McCandlish, A. Radford, I. Sutskever, D. Amodei, Language models are few-shot
learners, 2020, ArXiv, abs/2005.1.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G.
Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M.
Bavarian, C. Winter, P. Tillet, F. Such, D. Cummings, M. Plappert, F. Chantzis, E.
Barnes, A. Herbert-Voss, W.H. Guss, A. Nichol, I. Babuschkin, S. Balaji, S. Jain,
A. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,
M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S.
McCandlish, I. Sutskever, W. Zaremba, Evaluating large language models trained
on code, 2021, ArXiv, abs/2107.0.

R. Moreno, R.E. Mayer, Cognitive principles of multimedia learning: The role
of modality and contiguity, J. Educ. Psychol. 91 (2) (1999) 358-368, http:
//dx.doi.org/10.1037/0022-0663.91.2.358.

J.C. Roberts, State of the art: Coordinated & multiple views in exploratory
visualization, in: Fifth International Conference on Coordinated and Multiple
Views in Exploratory Visualization (CMV 2007), 2007, pp. 61-71, http://dx.doi.
org/10.1109/CMV.2007.20.

A. Buja, J.A. McDonald, J. Michalak, W. Stuetzle, Interactive data visualization
using focusing and linking, in: Proceeding Visualization '91, 1991, pp. 156-163,
http://dx.doi.org/10.1109/VISUAL.1991.175794.

Q. Zhi, A. Ottley, R. Metoyer, Linking and layout: Exploring the integration
of text and visualization in storytelling, Comput. Graph. Forum 38 (3) (2019)
675-685, http://dx.doi.org/10.1111/cgf.13719.

S. Kandel, A. Paepcke, J. Hellerstein, J. Heer, Wrangler: Interactive visual
specification of data transformation scripts, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’11, Association
for Computing Machinery, New York, NY, USA, 2011, pp. 3363-3372, http:
//dx.doi.org/10.1145/1978942.1979444.

R. Faust, K. Isaacs, W.Z. Bernstein, M. Sharp, C. Scheidegger, Anteater: Inter-
active visualization for program understanding, 2019, CoRR, abs/1907.02872,
arXiv:1907.02872 URL http://arxiv.org/abs/1907.02872.

A. Binks, A. Toniolo, M.A. Nacenta, Representational transformations: Using
maps to write essays, Int. J. Hum.-Comput. Stud. 165 (2022) 102851, http:
//dx.doi.org/10.1016/j.ijhcs.2022.102851.

Z. Kiziltan, M. Lippi, P. Torroni, Constraint detection in natural language problem
descriptions, in: IJCAIL, 2016, pp. 744-750.

A.J. Parkes, H.S. Raffle, H. Ishii, Topobo in the wild: Longitudinal evaluations
of educators appropriating a tangible interface, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’08, Association
for Computing Machinery, New York, NY, USA, 2008, pp. 1129-1138, http:
//dx.doi.org/10.1145/1357054.1357232.

http://refhub.elsevier.com/S2590-1184(23)00052-7/sb37
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb37
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb37
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb37
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb37
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb38
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb38
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb38
http://archive.org/details/visualdisplayofq00tuft
http://dx.doi.org/10.1016/S1045-926X(05)80036-9
http://dx.doi.org/10.1016/S1045-926X(05)80036-9
http://dx.doi.org/10.1016/S1045-926X(05)80036-9
http://dx.doi.org/10.1145/3025453.3025942
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb42
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb42
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb42
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb43
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb43
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb43
http://dx.doi.org/10.1126/science.208.4450.1335
http://dx.doi.org/10.1126/science.208.4450.1335
http://dx.doi.org/10.1126/science.208.4450.1335
http://dx.doi.org/10.1006/jvlc.1999.0124
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb46
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb46
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb46
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb46
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb46
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb46
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb46
http://dx.doi.org/10.4324/9780203457955
http://www.jstor.org/stable/23368119
http://www.jstor.org/stable/23368119
http://www.jstor.org/stable/23368119
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb49
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb49
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb49
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb49
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb49
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb49
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb49
http://dx.doi.org/10.24963/ijcai.2019/148
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb51
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb51
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb51
http://dx.doi.org/10.1002/9780470479216.corpsy0524
http://dx.doi.org/10.1002/9780470479216.corpsy0524
http://dx.doi.org/10.1002/9780470479216.corpsy0524
http://dx.doi.org/10.1076/csed.13.2.137.14200
http://dx.doi.org/10.1076/csed.13.2.137.14200
http://dx.doi.org/10.1076/csed.13.2.137.14200
http://arxiv.org/abs/2005.1
http://arxiv.org/abs/2107.0
http://dx.doi.org/10.1037/0022-0663.91.2.358
http://dx.doi.org/10.1037/0022-0663.91.2.358
http://dx.doi.org/10.1037/0022-0663.91.2.358
http://dx.doi.org/10.1109/CMV.2007.20
http://dx.doi.org/10.1109/CMV.2007.20
http://dx.doi.org/10.1109/CMV.2007.20
http://dx.doi.org/10.1109/VISUAL.1991.175794
http://dx.doi.org/10.1111/cgf.13719
http://dx.doi.org/10.1145/1978942.1979444
http://dx.doi.org/10.1145/1978942.1979444
http://dx.doi.org/10.1145/1978942.1979444
http://arxiv.org/abs/1907.02872
http://arxiv.org/abs/1907.02872
http://arxiv.org/abs/1907.02872
http://dx.doi.org/10.1016/j.ijhcs.2022.102851
http://dx.doi.org/10.1016/j.ijhcs.2022.102851
http://dx.doi.org/10.1016/j.ijhcs.2022.102851
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb63
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb63
http://refhub.elsevier.com/S2590-1184(23)00052-7/sb63
http://dx.doi.org/10.1145/1357054.1357232
http://dx.doi.org/10.1145/1357054.1357232
http://dx.doi.org/10.1145/1357054.1357232

	Solvi: A visual constraint modeling tool
	Introduction
	Example Problem
	Background and Related Work
	Design Goals and Principles
	Solvi: Design
	General Structure
	Visual Modeling Pane and Solvi Visual Language
	Text Pane
	Visual and textual Solutions Panes
	Other Features

	Design Methodology and Implementation
	Solvi: Evaluation
	Evaluation Design Rationale
	Participants and Procedure
	Measurements and Analysis Methodology
	Results

	Discussion
	Interpretations of Empirical Evaluation Results
	Solvi Design Discussion
	Limitations and Future Work

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

